
BeastLink v1.0

Cesys Product Guide for BeastLink v1.0 IP Core.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 1



Introduction

Introduction
The  BeastLink  IP  Core  is  an  efficient  bridge  between  the  Cypress  FX3  USB

controller's slave FIFO Interface (GPIF-II)  and ARM's Advanced Extensible Interface
(AXI-4) bus system. The IP Core facilitates an easy and efficient connectivity between a
host PC with Superspeed Universal Serial  Bus (USB3.0) and a number of on-board
peripherals  controlled  by  an  FPGA.  The  IP  provides  a  ready  solution  for  systems
requiring  USB communication.  This  is  accomplished by  interfacing  the  widely  used
Cypress  FX3's  slave  FIFOs  and  AXI4-Memory-Mapped  peripherals,  for  example,
Memory Interface Generator, Block RAM Controller, General Purpose IOs, AXI-XADC
etc. Such peripherals are readily available in the Vivado Ultrafast design methodology
IP catalog. Users can also interface their custom AXI4 protocol based peripherals (IPs)
with the BeastLink IP. The IP Core is intended to be used in FPGA designs where an
interface between FX3's slave FIFOs and AXI4-Bus system is required. The BeastLink
v1.0 IP Core is designed to be used in Xilinx's Vivado Design Suite.

The BeastLink v1.0 IP Core is a part of the Cesys BeastLink Library that provides a
complete solution for systems requiring Highspeed USB communication between a host
PC and an FPGA Design. The host-software can read/write all the functional blocks of
the design by simply calling read/write API functions of the Cesys BeastLink Library.
The referenced addresses are embedded in the BeastLink protocol, transferred serially
over the Universal Serial Bus (USB) and are stored intermediately in the FX3's slave
FIFOs. The BeastLink IP Core, configured as the master, reads/writes the slave FIFOs
in  FX3  over  a  General  Programmable  Interface  (GPIF-II)  and  translates  the
commands/data  into  AXI4-Full  cycles  to  access  the  on-chip  registers  or  on-board
peripherals.

Features
● Supports AXI-4 Memory-Mapped Interface specifications
● Supports FX3's GPIF-II slave FIFO interface
● Uses DMA to transfer data to and from Memory-mapped peripherals
● Supports transfer sizes of upto 8 Megabytes
● Connects seamlessly with AXI based peripherals
● Supports AXI-4 Full and Lite protocols
● Provides a 4G address space
● Supported on all Xilinx 7-series FPGA parts

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 2



IP Facts

IP Facts

IP Information

Supports Further Details

Target Language VHDL

Devices Xilinx 7-Series FPGAs

User Interfaces AXI4-Memory-Mapped and GPIF-II

Tool Vivado 2017.4 onwards

Inclusions

Particular Evaluation Version Full Version

Design Files Encrypted IP VHDL

Example Design VHDL

Simulation files Verilog + VHDL

Constraints files XDC

Support http://cesys.com/download/fpga/

Resource Utilization

The BeastLink IP-Core is synthesized and implemented in Vivado version 2017.4. It
was  tested  on  the  "XC7A200TFBG676-2"  part  embedded  on  the  Cesys  EFM03
Beastboard. The Post-Implementation Resource Utilization report can be seen in the
below table.

Resource Utilization

LUT 1797

LUTRAM 176

FF 2030

BRAM 26.50

IO 261

BUFG 2

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 3

http://cesys.com/download/fpga/


IP Facts

Applications
● High performance PC peripherals
● Image processing
● DSP co-processing
● Embedded Control
● Custom test equipment
● Data acquisition daughter cards

Advantages

The IP Core has several advantages like:

1. Provides a ready solution for systems using Superspeed USB (USB-3.0)
2. Greatly reduces development time in USB-based designs
3. Interfaces 2 widely used technologies; AXI bus system and FX3 Chipset
4. Facilitates high data-rates upto 315 MB/s for Read and Write accesses
5. Proven stable performance for long durations with rigorous tests
6. Backward compatibility with USB2.0

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 4



Quick Start

Quick Start
This section presents a brief explanation about obtaining the IP Core and adding the

design files to the IP Catalog and eventually, using it in the project. To know more about
the IP Core, generating its outputs and running synthesis, implementation and bitstream
generation, please go through the "Overview" and "Example Design" sections of this
document.

Obtaining the IP-Core files

The BeastLink v1.0 IP Core is available as part of the Cesys BeastLink Library that
can be evaluated or purchased. The core's design files and an example design are
packed in an archive "BeastLink_IP.zip". Using the login information that you received
from  our  customer  support,  please  download  the  archive  from  our  website
(https://www.cesys.com).

Adding the BeastLink IP to the IP Catalog

The IP core can be added to the Vivado IP Catalog by following the below steps:

1. Create a new Vivado project or open the Vivado project in which you 
want to add the BeastLink IP

2. Make sure the project's target language is VHDL
3. In the Flow Navigator window, under Project Manager tab, open IP 

Catalog
4. In the IP Catalog Window, Right-Click and select Add Repository... 

option
5. Navigate to the location where you have unzipped the above mentioned 

archive
6. Select BeastLink_IP folder and press Select

Now, in the  IP Catalog window, you must  be able to see a section called User
Repository. Under User Repository->UserIP one can see BeastLink v1.0. To add the
IP to a design as source (without block design), follow the below steps:

1. In the Flow Navigator window, under Project Manager tab, open IP 
Catalog

2. Under User Repository->UserIP, double click on BeastLink v1.0 IP
3. In the customization window, press OK
4. In the Generate Output Products popup, under Synthesis Options, 

select Global and press Generate
5. The IP Core will be added to your design

To add the BeastLink v1.0 IP to a block design in your project, follow the below

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 5

https://www.cesys.com/


Quick Start

steps:

1. Select Create Block design under IP Integrator tab in Flow Navigator 
window

2. If you already have an existing Block design open, move to the Diagram 
window

3. Right click on the canvas and select Add IP... option
4. In the IP selection dropbox, search for or navigate through the list to find 

BeastLink v1.0.
5. Select BeastLink v1.0 and the IP should appear on the canvas
6. Make necessary connections and save the block design. Under IP 

Integrator Click on Generate Block Design
7. In the Generate Output Products popup, under Synthesis Options, 

select Global and press Generate
8. The IP Core will be added to your design

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 6



Overview

Overview
A detailed description of the BeastLink IP Core is presented in this chapter. The IP's

ports, the internal structure and functionality are described here.

Port Description

The below figure shows the BeastLink v1.0 IP core GUI symbol.

BeastLink Port Description

Signal Interface I/O Default Description

sys_clk Clock I NA System Clock.
This is a 100MHz clock.

i_fx3_pclk Clock I NA FX3 GPIF state machine clock. This 
clock can either externally be provided or 
the on-board loop-back clock can be used.
Please Refer Hardware reference guide 
for Cesys EFM03 Beastboard for further 
details.

This is a 100MHz clock.

i_reset Reset I 0 System Reset, active Low.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 7

The BeastLink v1.0 IP-Core GUI symbol



Overview

Signal Interface I/O Default Description

i_fx3_flag 
(3:0)

I 0000 Flags from the FX3 slave FIFOs. They 
can be programmed to display different 
levels of the slave FIFO. For this IP core, 
the flags must be programmed as follows:

Bit '0': FX3_POP_IS_EMPTY
FX3 slave FIFOs are empty

Bit '1': FX3_POP_POSSIBLE
FX3 slave FIFO has at least 8Kbyte data 
to be read

Bit '2': FX3_PUSH_IS_FULL
FX3 slave FIFOs are full

Bit '3': FX3_PUSH_POSSIBLE
FX3 slave FIFO has at least 8Kbyte space

o_fx3_faddr 
(1:0)

Slave FIFO 
Address

O 00 FX3 slave FIFO Address. The FX3 slave 
consists of 4 slaves which can be used to 
achieve high performance. For this IP, 
only 2 slave FIFOs are utilized.

Bit '0': Always 0
Bit '1': 0 -> Host-2-Peripheral transfers
Use slave FIFO socket-0 for H2P 
transfers
Bit '1': 1 -> Peripheral-2-Host transfers
Use slave FIFO socket-2 for P2H 
transfers

io_fx3_fdata Slave FIFO 
Data bus

IO Z FX3 controller's data bus.

This bus is a bidirectional bus. It needs an
additional signal to control the data 
direction. See o_fx3_sloe_n.

o_fx3_slwr_n write enable O 1 The FX3 slave Interface's Write Enable 
signal. The IP core asserts this signal 
when it has data to write to FX3 slave 
FIFO. This signal is asserted after the 
o_fx3_slcs_n signal is asserted.

This is an active low signal.

o_fx3_slrd_n read enable O 1 The FX3 slave Interface's Read Enable 

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 8



Overview

Signal Interface I/O Default Description

signal. The IP core asserts this signal 
when it wants to read data from the FX3 
slave FIFOs. This signal is asserted after 
the o_fx3_slcs_n and o_fx3_sloe_n 
signals are asserted.

This is an active low signal.

o_fx3_sloe_n output 
enable

O 1 The FX3 slave Interface's Output Enable 
signal. The IP core asserts this signal 
when it wants to read data from the FX3 
slave FIFOs. This signal is asserted after 
the o_fx3_slcs_n signal and before the 
o_fx3_slrd_n signals are asserted.
This is an active low signal.

This signal is the output enable for the 
Bidirectional data port.

'0' -> io_fx3_fdata behaves as input port 
The slave drives the data bus.
If there is no input from the slave, the IP 
core pulls the data bus into a HIGH 
Impedence state (Z).
'1' -> io_fx3_fdata behaves as output port.
The master drives the data bus.
The slave pulls the data bus into a HIGH 
Impedence state (Z).

o_fx3_slcs_n Slave FIFO 
Chip Select

O 1 FX3 controller's Chip Select Signal.

This is an active low signal.

o_fx3_pktend
_n

Slave FIFO 
packet end 
signal

O 1 FX3 controller's Packet end signal.

This design does not make use of packet 
end signalling. This signal is always 
deasserted in this IP-Core.
This is an active low signal.

o_fx3_pclk PCLK for 
FX3

O NA FX3 controller's Clock Signal.

Maximum of 100MHz clock frequency 
can be supplied to the FX3 controller. 
This IP Core provides a 100MHz Clock 
through this port. If the FX3 firmware 

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 9



Overview

Signal Interface I/O Default Description

changes the FX3 input clock frequency, 
this port must be configured to provide 
the appropriate clock frequency.

M_AXI AXI Master NA NA AXI4-Full Master bus.

These signals follow AXI Specifications 
as mentioned in the Appendix A of the 
Vivado AXI reference Guide 
(UG1037)for AXI4, AXI4-Lite and AXI-
Stream Signals.

Clocking

The BeastLink v1.0 IP-Core operates on the  sys_clk. It is a  100MHz Clock. This
clock is internally connected to the "o_fx3_pclk" output which drives the on-board FX3.
Users must make sure that the "o_fx3_pclk" output is looped back in hardware to an
FPGA ball. This looped back clock must drive the "i_fx3_pclk" port in the BeastLink IP
Core.

Important!

Use the same clock signal to drive the AXI bus system in the design and the sys_clk of
BeastLink IP.

Resets

The BeastLink v1.0 IP-Core is reset when the i_reset is asserted. This signal is an
active-LOW reset.

Important!

The reset on the Cesys EFM03 Beastboard provides an active-HIGH reset to the FPGA
on pin K15. However, the reset port i_reset in the BeastLink v1.0 IP-Core is an active-
LOW reset. Users have to convert the active-HIGH signal to an active-LOW reset.

Hint!

If  an MMCM is used to generate the 100MHz  sys_clk, then the  i_reset port can be
connected to MMCM's clock locked signal. If a Memory Interface Generator (MIG) IP
Core is used in the design, use the 100MHz  ui_clk output of the MIG to drive the
sys_clk port. Further, if MIG IP is used, then the i_reset input must be an active-LOW

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 10



Overview

signal resulting from a combnination of the init_calib_complete, mmcm_locked and the
ui_clk_sync_rst signals. If any other components used in the design have to wait for
initialization, then appropriate signals must be added to the above combination. For
example, if the user design contains a STARTUPE2 primitive, then the End Of Startup
(EOS) signal  of  the  STARTUPE2  primitive  must  also  be  included  in  the  above
mentioned combinatorial logic. This ensures that the BeastLink IP is held in reset until
all the dependent modules have initialized properly.

Functional Description

Current FPGA design trends based on Xilinx parts have mostly moved towards the
block  design  methodology.  The  BeastLink  IP Core  fits  perfectly  into  this  trend  and
provides  an  easy  and  efficient  translation  between  the  FX3's  GPIF-II  slave  FIFO
interface and the widely used AXI4 bus system. The IP Core communicates with the
FX3 slave FIFOs over a GPIF-II interface, interprets the commands issued by the host
using the BeastLink protocol (BeastLink Protocol Structure and also AN101 for  UDK3
Transfer  Protocol).  It  then  issues  DMA transfers  to  perform  AXI4  accesses  to  the
peripherals present in the design. This section describes the internal structure of the
BeastLink IP and its functionality in detail.

Internal Structure

The BeastLink IP core, as shown in figure below, consists of the following important
components and state-machines:

● GPIF-II State Machine
● CMD/Write and Resp/Read FIFOs
● UDK3 State machine
● DMA Engine

The figure below gives an overview of the internal structure of the BeastLink IP core.
Each of these components and state-machine functionality are described in detail in the
upcoming sections.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 11



Overview

BeastLink Protocol Structure

The following description of the BeastLink data structure is for information only. It is
used internally to serialize the address-based transfers. The structure can be treated as
a black box when using the BeastLink in own designs. The data structure is similar to
the structure of the previous UDK/UDK3 data structures. The read/write APIs in the

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 12

Broad overview of the internal structure of BeastLink v1.0 IP-Core



Overview

Cesys BeastLink Library pack the commands and data to  be transferred in  8Kbyte
blocks as shown in the figure below.

On  response  to  an  API  call  in  the  Host  software,  the  Host  sends  an  8Kbyte
Command packet as shown in the figure above. Based on the transfer direction bit in
CMD/SIZE field, the Host or the Device sends the Data packet. If the data packet is less
than 8192 bytes, then the Cesys BeastLink Library or BeastLink IP automatically inserts
dummy data to the remainder of the packet.

The Command and Data packet fields are explained in the table below.

Field Size Default Description

CMD/SIZE 32 bits 0 Bit 31: Transfer Direction
'1' -> Host-2-Peripheral(H2P)
'0' -> Peripheral-2-Host(P2H)

Bit 30: Addressing Mode
'1' -> Auto-increment (API Default)
'0' -> Constant Addressing

Bit 29:24: RESERVED

Bit 23:0 : Payload size in WORDS

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 13

BeastLink protocol used by the Cesys BeastLink Library for transferring data



Overview

Field Size Default Description

ADDRESS 32 bits 0 Start Address of the current transfer. The 
BeastLink IP expects Word-aligned address only.
This is a limit imposed by the DMA.

DUMMY 0 Dummy WORDS to fill the 8Kbyte block. Only 
complete blocks are transferred. No short packet 
implementation is supported.

DATA 4 to 8192 0 This field contains the payload of the current 
transfer. The transferred amount of data must 
always be a multiple of the transfer block size 
(8Kbyte).

Unused buffer space must be filled with 
DUMMY data. Dummy data is automatically 
inserted in data packets by the BeastLink IP or 
the Cesys BeastLink Library based on Transfer 
direction.

GPIF-II State Machine

The Cypress FX3 USB controller  transfers data to its master over a slave FIFO
interface and this is called the 2nd generation General Programmable Interface (GPIF-
II). The FX3 controller sets output flags to indicate the slave FIFO levels to the master
requesting data from or providing data to it. The BeastLink IP Core is designed to be the
master.  Based on the FX3's flags, the IP reads the FX3's slave FIFOs if  a Host-2-
Peripheral command is issued and stores the command in the CMD/Write Data FIFO. If
a Peripheral-2-Host command is issued, the IP checks the FX3's FIFO levels and if
there is an 8Kbyte space available, it initiates a read transfer to FX3 slave FIFOs.

CMD/Write and Resp/Read FIFOs

The IP-Core contains an 8K deep (CMD/Write FIFO) and a 16K deep FIFO (Resp/
Read FIFO), both with a data-width of 32-bits. Therefore, each of the FIFOs can hold
atleast  4  complete  8Kbyte  BeastLink  protocol  frames  (See  BeastLink  Protocol
Structure).  The  GPIF-II  State  machine  writes  the  commands  or  write  data  to  the
CMD/Write FIFO and reads peripheral data through the Resp/Read Data FIFO. These
FIFOs are setup to hold atleast one complete USB3.0 Data field of size 8Kbyte at a
time.  The  FIFOs  are  configured as  "Independent  Clocks,  Block  RAM"  so  that  they
operate at independent Read and Write clocks and instantiates Block RAMs for storage.
The transaction begins as soon as there is data in the CMD/Write Data FIFO. It is the

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 14



Overview

responsibility of the user to provide 8Kbyte frames.

UDK3 State machine

This module decodes the Cesys UDK3 protocol  (See also  AN101 for  UDK3 api
specifications), issues commands and provides data to the DMA engine. Based on the
commands issued and the data given, the DMA Engine initiates a transfer to or from the
addressed peripheral.

If the host issues a Host-2-Peripheral command, then the command is followed by
data.  The  UDK3 state  machine  reads  the  CMD/Write  Data  FIFO  and  decodes  the
command. It then reads out the dummy bytes stuffed to the 8Kbyte command packet
and awaits data. As soon as the data is seen in the CMD/Write Data FIFO, the UDK3
state-machine issues a WRITE command to the DMA engine. The DMA engine then
reads data directly from the Write Data FIFO and transfers it to the Peripheral which
was addressed in the command.

If  the  host  issues  a  Peripheral-2-Host  command,  then  the  GPIF-II  stores  this
command in the CMD/Write Data FIFO. The UDK3 State-machine reads this command
and issues a READ command to the DMA Engine. The DMA engine in turn reads the
Peripheral  addressed  by  the  command  and  stores  the  read  data  directly  in  the
Resp/Read Data FIFO.

According  to  the  UDK3 protocol,  each  transfer  is  8Kbyte  long and  if  the  whole
8Kbyte is  not  used,  the remaining data fields must  be stuffed with  DUMMY values
(0x00). For a CMD/Write transfer, the DUMMY insertion has to be done by the HOST.
For Resp/Read transfers,  the UDK3 State-machine does this automatically once the
requested number of bytes has been written into the Resp/Read Data FIFO.

Elimination of Read-Write Collision

The Cesys BeastLink Library sends commands and data to (or expects data from)
the FPGA design sequentially over a USB interface. The DMA Engine on the other
hand, consists of separate FIFOs for both, Read and Write accesses, thus facilitating
actual parallel execution of Read/Write accesses which is a characteristic feature of the
AXI4 Bus. However, most peripheral modules consist of a single bus to Read/Write to
the  on-board  peripheral  and do not  support  parallel  Read/Write  accesses.  When a
slower peripheral is connected to the system and a Write followed by a Read access is
executed, a Read-Write collision may occur at the AXI-slave Peripheral. This is because

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 15



Overview

a Write access is still  in progress and a Read access is serviced by the AXI slave
(parallelism). This collision occurs especially when writing to very slow peripherals such
as a Flash Controller, over AXI-Lite Interface, in which write accesses typically takes 10-
15us to complete.

When an AXI-Lite slave is connected to the master interface of AXI Interconnect, the
interconnect automatically instantiates an AXI Protocol Converter (auto PC) in order to
translate AXI-Full bus cycles (from DMA engine) into AXI-Lite cycles. The auto PC has a
latency  of  2  AWREADY-AWVALID  handshakes  (or  ARREADY-ARVALID).  Such  an
implementation may cause a Read-Write collision between the last write and the first
read access at the peripheral's AXI slave Interface which is not in the BeastLink IP's
control.

The  UDK3  state  machine  eliminates  any  collision  that  can  be  caused  at  the
BeastLink IP's master which is driving the AXI Interconnect. It is acheived by ensuring a
sequential  execution  of  host  commands  on  the  DMA's  Memory-Map  write
interface(M_AXI_S2MM). This is accomplished by simply waiting for the DMA Engine to
complete the current write access to the AXI Interconnect. Only after The DMA Engine
signals the end of the write transfer (xfer_cmplt), the next command will be processed.
However, when an AXI4-Lite interface is connected to the master interface of the AXI
Interconnect, as explained earlier, is out of scope of the UDK3 state machine. The slave
Peripheral should not accept read accesses when write accesses are present at the
interface.

In  custom  peripherals  based  on  AXI-Lite  slave  interface,  users  can  acheive
sequential accesses by waiting for the write transfers to complete before asserting the
'ready'  signal  of  the  Read  Address  channel  (ARREADY)  of  the  slave.  The  read
accesses  will  be  stalled  until  the  slave  has  finished  writing  to  the  peripherals.  An
example code is shown here:

if (axi_arready = '0' and S_AXI_ARVALID = '1'  -- Previous handshake completed
  and  peripheral_ready = '1'                  -- peripheral is ready
  and S_AXI_AWVALID = '0' and axi_awready = '0') then  -- when no writes (SEQ)
  -- slave has accepted valid RD_addr
  axi_arready <= '1';
  axi_araddr  <= S_AXI_ARADDR;
else
  axi_arready <= '0';
end if;

The above code snippet is an edited extraction from the AXI-Lite slave interface to
generate  the  ARREADY  signal.  It  is  generated  by  Xilinx  Vivado  tool.  The  line
commented as 'SEQ' has been manually inserted and it ensures that the read access is

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 16



Overview

accepted only when there are no more writes at the AXI-slave interface.

The DMA Engine

The  DMA Engine  used  in  this  IP  Core  converts  AXI4  Streaming  data  to  AXI4
Memory-mapped protocol and vice versa, based on the commands issued to it. The
data for a Host-2-Peripheral  transfer  is provided by the CMD/Write Data FIFO. The
UDK3  State-machine  provides  the  FIFO  data  to  the  DMA engine  over  an  AXI4
streaming protocol.  The DMA engine writes this data to the peripherals via an AXI-
Interconnect  based  on  AXI4-Full  protocol.  After  it  has  transferred  the  write  data
completely  onto the  AXI-Interconnect,  the  DMA Engine signals  the end of  transfers
(xfer_cmplt)  signal  to the AXI-FX3-Interface and waits for the next  command. For a
Peripheral-2-Host  transfer,  the  DMA Engine  reads  the  peripherals  over  AXI4-Full
protocol and provides this data to the UDK3 State-machine over an AXI4 streaming
interface.  The  DMA generates  a  'tlast'  (AXI4-Streaming  interface)  signal  when  it  is
transferring the last 32-bit data which signals the end of transfer during a read access.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 17



Example Design

Example Design
This  chapter  contains  information  about  the  example  design  provided  with  the

BeastLink v1.0 IP-Core. It serves as a starting point for user designs. The design is
structured in such a way that it reduces development time in the user's custom designs.
One can easily expand the example design by adding custom blocks/IPs to the AXI bus
system or by modifying the existing design. The example design is delivered as a set of
VHDL sources with  the  BeastLink  IP Core.  The example  design  can be simulated,
synthesized, implemented and a bitstream can be generated for validation on hardware.
This design was developed using Vivado Design Suite 2017.4 and and tested on the
Cesys EFM03 Beastboard.

The example design consists of the following components and primitives:

○ BeastLink top module
○ BeastLink v1.0 IP Core
○ Block Memory Generator with AXI interface
○ An MMCM primitive

Using the example design

The  top  module  instantiates  all  components  and  IP-cores  that  are  essential  for
implementing  the  example  design  on  .  The  example  design  is  named  as
BeastLink_0_ex.xpr and can be opened by following the below steps:

1. Add the BeastLink_IP to the project as described in the section Quick 
Start

2. Make sure the project's target language is VHDL
3. Under IP Integrator, click on Generate Block Design or find the IP in 

sources window and right-click -> Generate Output Products...
4. In Generate Output Products... popup, Global under Synthesis Options 

and press Generate
5. Right-click on BeastLink_IP and select Open IP example design...
6. A new Vivado instance will open with the BeastLink example design

The example design receives commands from the host, and based on the received
command, performs a READ or a WRITE operation on the AXI Block-RAM peripheral.
There are 2 different file sets in this example design, one for simulation and one for
synthesis.  Each  of  them  is  explained  in  detail  in  the  upcoming  sections.  A brief
explanation is provided below about the components used. The figure below gives an
overview of the example design and the components it consists.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 18



Example Design

Clock Module

The example design instantiates a Mixed Mode Clocking Manager (MMCM) primitive
with  a  Differential-to-Single-ended  Buffer  (BUFDS)  primitive.  The  BUFDS  module
converts the differential 200MHz clock (FPGA balls R3/P3) from the board to a Single-
ended 200MHz clock which is provided to the input clock of the MMCM primitive. The
MMCM primitive generates a 100MHz single ended clock to drive all the components in
the example design. The clock module also takes in the system reset (FPGA ball K15)
signal from the board. The active-LOW reset for all the components in the design is
driven by the MMCM's clock locked signal. The MMCM is configured as shown below.

-- Jitter programming (OPTIMIZED, HIGH, LOW)
BANDWIDTH         => "OPTIMIZED",

CLKFBOUT_MULT_F   => 5.0, -- Multiply value for all CLKOUT (2.000-64.000).
CLKFBOUT_PHASE    => 0.0, -- Phase offset in degrees of CLKFB (-360.000-360.000).
CLKIN1_PERIOD     => 5.0, -- Input clock period in ns to ps resolution (i.e. 5.0 is 
200 MHz).
-- CLKOUT0_DIVIDE - CLKOUT6_DIVIDE:
-- Divide amount for each CLKOUT (1-128)
CLKOUT1_DIVIDE    => 1,
CLKOUT2_DIVIDE    => 1,
CLKOUT3_DIVIDE    => 1,
CLKOUT4_DIVIDE    => 1,
CLKOUT5_DIVIDE    => 1,
CLKOUT6_DIVIDE    => 1,
CLKOUT0_DIVIDE_F  => 10.000, -- Divide amount for CLKOUT0 (1.000-128.000).

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 19

Block Diagram of the example design.



Example Design

-- CLKOUT0_DUTY_CYCLE - CLKOUT6_DUTY_CYCLE:
-- Duty cycle for each CLKOUT (0.01-0.99).
CLKOUT0_DUTY_CYCLE => 0.5,
CLKOUT1_DUTY_CYCLE => 0.5,
CLKOUT2_DUTY_CYCLE => 0.5,
CLKOUT3_DUTY_CYCLE => 0.5,
CLKOUT4_DUTY_CYCLE => 0.5,
CLKOUT5_DUTY_CYCLE => 0.5,
CLKOUT6_DUTY_CYCLE => 0.5,

-- CLKOUT0_PHASE - CLKOUT6_PHASE:
-- Phase offset for each CLKOUT (-360.000-360.000).
CLKOUT0_PHASE   => 0.0,
CLKOUT1_PHASE   => 0.0,
CLKOUT2_PHASE   => 0.0,
CLKOUT3_PHASE   => 0.0,
CLKOUT4_PHASE   => 0.0,
CLKOUT5_PHASE   => 0.0,
CLKOUT6_PHASE   => 0.0,
CLKOUT4_CASCADE => FALSE,  -- Cascade CLKOUT4 counter with CLKOUT6 (FALSE, TRUE)

DIVCLK_DIVIDE => 1,   -- master division value (1-106)
REF_JITTER1 => 0.0,   -- Reference input jitter in UI (0.000-0.999).
STARTUP_WAIT => FALSE -- Delays DONE until MMCM is locked (FALSE, TRUE)

BRAM Controller and Block Memory Generator

The example design instantiates Block RAM using the Block Memory Generator IP
Core available in  Vivado.  This IP uses Block RAM primitives present  on the FPGA
fabric. In this example design, a 16Kbyte (4096 * 32 bit data width) Block RAM module
is instantiated. The Block Memory Generator in this example design is instantiated with
the following settings:

Window Parameter Settings

BASIC Interface Type AXI4

Memory Type Simple Dual Port

Algorithm Minimum Area

AXI4 AXI Type AXI4

AXI Slave Type Memory slave

ID Width 4

Port A Opt Width 32

Depth 4096

Port B Opt Identical to Port A

Other Options Enable Safety Circuit Deselected

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 20



Example Design

Window Parameter Settings

Collision Warnings All

The  AXI  based  Block  Memory  Generator  has  a  16K  address  range  starting  at
0x00000000 up until 0x00003FFF. For further details on the Block Memory Generator
IP-core, please refer to PG058 programming guides from Xilinx.

Note!

Only the options shown in the above table are modified. All other options remain default.
The Interface Type option can be set to AXI4 only when the core is instantiated from
the IP Catalog.

Simulating the design

The  BeastLink  example  design  consists  of  two  file  sets,  one  for  synthesis/
implementation and another for simulation.  This section describes the design in the
simulation workflow.

The simulation workflow contains the same components as the synthesis workflow,
the only difference being that the simulation workflow contains Verilog files for Block
Memory Generator, whereas the synthesis workflow contains VHDL files. The design is
buit so because Xilinx supports only Verilog for simulation. Apart from this difference,
the design is same in both workflows and they are functionally identical. The simulation
file  set  also  contains  a  VHDL  test  bench  TB_beastlink_exdes_top.vhd which
instantiates the top module as DUT. This test bench provides the 200MHz differential
clock and the active-HIGH system reset. It receives the "o_fx3_pclk" from the DUT and
loops it back the DUT as "i_fx3_pclk". The test bench also provides Commands and
Data to the DUT. It writes to the entire 16Kbyte BRAM address space and then reads
the BRAM contents back. No verification is done during read back.

The test-bench is designed in such a way as to provide commands and data to the
design. It  follows the BeastLink protocol structure (See  BeastLink Protocol Structure
section).  The test-bench provides all  the clocks and resets required to simulate the
design.

At time 0s, the test-bench asserts and holds the reset signal to '1' (active-HIGH in
top module). It waits for 50 clock cycles (250ns) before deasserting it. The test-bench
then  sets  the  FX3 Flags  for  a  write  operation  ("0010")  and  writes  the  header  and
dummy  bytes  followed  by  16384  data  bytes  to  the  BRAM  starting  from  address
0x00000000. After writing the data, the FX3 Flags are set to "0000" which signifies no

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 21



Example Design

opertion. After 25us, the FX3 Flags are set to "0010" in order to transfer a command to
read the previously written 16384 bytes from BRAM starting from address 0x00000000.
After transferring the read command, the FX3 Flags are set to "1000" which signifies
that  the  FPGA can  transfer  the  16384  bytes  read  from  BRAM over  the  FX3  data
interface.  The BeastLink  v1.0  IP-Core  inserts  the  required  amount  of  dummy bytes
while transferring the data over the FX3 data interface.

The simulation design is completely built and the user can analyze the waveforms
by just running the simulation. To simulate the design, please click on Run Simulation
under SIMULATION section in the Flow Navigator window of Vivado. Please execute
simulation  for  at  least  250  micro  seconds  in  order  to  analyze  the  write  and  read
operations.

Synthesis and Implementation

For  synthesizing  the  design,  click  on  Run Synthesis in  Flow  Navigator under
Synthesis.

For implementing (Place And Route) the design, click on  Run Implementation in
Flow Navigator under Implementation.

In  order  to  use  the  FPGA Design  in  Cesys  BeastLink  Library,  the  generated
bitstream must be in "<filename>.bin". A binary file can be genrated in the Vivado tool
chain  during bitstream generation.  This  can be accomplished by selecting  -bin_file
option under  Flow Navigator -> PROJECT MANAGER -> Settings -> Bitstream. If
Vivado TCL console is being used, then the option "-bin_file" must be added to the
"write_bitstream" command.

To generate a bitstream, click on  Generate Bitstream in  Flow Navigator under
Program and Debug.

Verifying the design

After generating the bitstream in Vivado toolset follow the below steps to verify the
design:

1. Copy the generated beastlink_exdes_top.bin and paste it in the 
<installation path>/udk3-tools-windows-1.5.1/ folder.

2. Run the UDK3perfMon.exe tool in the same folder
3. Select EFM03(XCA200T)SOC Block RAM or EFM03(XCA200T)SOC 

DDR3L RAM in Preset section.
4. In Device, select EFM03

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 22



Example Design

5. Browse and select the beastlink_exdes_top.bin in FPGA design file 
field (it is also selected by default)

6. Select the Transfer Block Size either by clicking on the options or by 
entering the size manually

7. Make sure the Transfer Block Size is a power of 2 or Area Size is a 
multiple of Transfer Block Size

8. Select Input to read, Output to write or all three to write data and then 
read and verify the written data.

9. Press Start; Data transfer should begin and run continuously without any 
errors.

Constraints

The example design is delivered with a Xilinx Design Constraints (XDC) file and it
can be found under:

<installation_path>/BeastLink_0_ex/imports/beastlink_constr.xdc.

The  constraints  in  this  file  were  written  in  accordance  with  the  Cesys  EFM03
Beastboard.  This file  contains all  the IO and timing constraints  required in order to
acheive the best performance with this example design. The most important constraints
are described below.

The constraints below describe the system clock, reset, output clock for FX3 and the
looped byck input clocks. It  establishes their locations, IO Standards and the timing
information of the clocks. These constraints set up the system clock at R3/P3 pins as a
200MHz differential clock and the  system reset at FPGA ball location K15. Further,
these constraints state that the output clock to FX3 (o_fx3_pclk; N21) is generated from
the sys_clk of the BeastLink IP Core and sets up the looped back clock (i_fx3_pclk;
M21) to be a 100MHz clock with 50% duty cycle.

# System Clock - 200MHz Differential Clock @ R3/P3
create_clock -period 5.000 -name sys_clk -waveform {0.000 2.500} [get_ports 
sys_clk_p]
set_property PACKAGE_PIN R3 [get_ports sys_clk_p]
set_property IOSTANDARD DIFF_SSTL135 [get_ports sys_clk_p]

# System Reset - ACTIVE HIGH input @ K15
set_property PACKAGE_PIN K15 [get_ports sys_rst]
set_property IOSTANDARD LVCMOS33 [get_ports sys_rst]

# Output clock to FX3 Chipset @ M21.
# This clock is looped back in hardware
set_property PACKAGE_PIN N21 [get_ports o_fx3_pclk]
set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_pclk]

# Input Clock looped back in Hardware @ N21

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 23



Example Design

# This is important for the functionality of this IP
set_property PACKAGE_PIN M21 [get_ports i_fx3_pclk]
set_property IOSTANDARD LVCMOS33 [get_ports i_fx3_pclk]
create_clock -period 10.000 -name i_fx3_pclk -waveform {0.000 5.000} [get_ports 
i_fx3_pclk]

# Generated clock constraint for the output clock "o_fx3_pclk"
# This is nothing but the "sys_clk" given to the BeastLink IP
create_generated_clock -name o_pclk -source [get_pins -filter REF_PIN_NAME=~sys_clk*
-of [get_cells -hier inst_beastlink*]] -multiply_by 1 [get_ports o_fx3_pclk]

Caution!

Users may modify the pin locations as per their own design requirements. However, it is
recommended not to modify the timing constraints.

These constraints set up the FPGA configuration mode. They state that the FPGA
will be configured by an external master device, in this case the FX3 chipset. These
constraints  are  very  important  and  have  to  be  present  if  the  FPGA needs  to  be
configured  by  host  PC  through  using  Cesys  BeastLink  Library.  Also,  the  FPGA is
instructed to use the 90MHz External  master Configuration Clock (EMCCLK) during
configuration and not the default 3MHz configuration clock (CCLK).

# Configuration Mode Slave Select Map 16 bit data bus
set_property CONFIG_MODE S_SELECTMAP16 [current_design]

# Use 90MHz External Master Configuration Clock during FPGA Configuration
set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN DIV-1 [current_design]

The FX3 Chipset has a tight setup/hold timing requirement on its input data bus and
has a large delay before it outputs data to FPGA. The FPGA design must comply to
these timing requirements. The below set_input_delay constraints state that FX3 data is
valid at the FPGA input port only after 8ns and is valid for 2 ns. The set_output_delay
constraints  establish the setup/hold requirement of  the FX3's control  input and data
input ports.

# FX3 Data Output Delay Constraints
set_input_delay -clock i_fx3_pclk -max 8 [get_ports io_fx3_fdata]
set_input_delay -clock i_fx3_pclk -min 2 [get_ports io_fx3_fdata]

# FX3 Control In and Data In setup/hold requirements
# SETUP is 2 ns, so max is 2
# HOLD is 0.5 ns, so min is -0.5
set_output_delay -clock o_pclk -max 2.000 [get_ports io_fx3_fdata]
set_output_delay -clock o_pclk -min -0.500 [get_ports io_fx3_fdata]

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_slcs_n]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_slcs_n]

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 24



Example Design

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_slwr_n]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_slwr_n]

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_slrd_n]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_slrd_n]

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_sloe_n]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_sloe_n]

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_pktend_n]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_pktend_n]

set_output_delay -clock o_pclk -max 2.000 [get_ports o_fx3_faddr]
set_output_delay -clock o_pclk -min -0.500 [get_ports o_fx3_faddr]

Warning!

These  timing  constraints  are  crucial  for  the  functionality  of  the  example  design
(eventually any design using BeastLink IP Core). Ignoring/modifying these constraints
may result in undefined behaviour.

The below constraints deal with the location and IO standards of the control and
data  pins  of  the  FPGA's  slave  FIFO  Interface.  The  FPGA output  data  ports  are
constrained for a drive strength of 12mA and for a fast slew-rate so that the data is
available at the FX3's inputs as soon as possible and with very less transition time. All
address/ control ports are configured for a higher drive strength of 16mA.

# FX3 Control pin Locations
set_property PACKAGE_PIN L19 [get_ports o_fx3_pktend_n]
set_property PACKAGE_PIN M22 [get_ports o_fx3_slcs_n]
set_property PACKAGE_PIN K17 [get_ports o_fx3_sloe_n]
set_property PACKAGE_PIN K16 [get_ports o_fx3_slrd_n]
set_property PACKAGE_PIN M19 [get_ports o_fx3_slwr_n]
set_property PACKAGE_PIN N22 [get_ports {o_fx3_faddr[1]}]
set_property PACKAGE_PIN P20 [get_ports {o_fx3_faddr[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_pktend_n]
set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_slcs_n]
set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_sloe_n]
set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_slrd_n]
set_property IOSTANDARD LVCMOS33 [get_ports o_fx3_slwr_n]
set_property IOSTANDARD LVCMOS33 [get_ports {o_fx3_faddr[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {o_fx3_faddr[0]}]

set_property DRIVE 16 [get_ports o_fx3_slcs_n]
set_property DRIVE 16 [get_ports o_fx3_sloe_n]
set_property DRIVE 16 [get_ports o_fx3_slrd_n]
set_property DRIVE 16 [get_ports o_fx3_slwr_n]
set_property DRIVE 16 [get_ports o_fx3_pktend_n]
set_property DRIVE 16 [get_ports {o_fx3_faddr[1]}]

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 25



Example Design

set_property DRIVE 16 [get_ports {o_fx3_faddr[0]}]

set_property PACKAGE_PIN T24 [get_ports {io_fx3_fdata[0]}]
set_property PACKAGE_PIN L23 [get_ports {io_fx3_fdata[1]}]
set_property PACKAGE_PIN L22 [get_ports {io_fx3_fdata[2]}]
set_property PACKAGE_PIN L24 [get_ports {io_fx3_fdata[3]}]
set_property PACKAGE_PIN N16 [get_ports {io_fx3_fdata[4]}]
set_property PACKAGE_PIN N17 [get_ports {io_fx3_fdata[5]}]
set_property PACKAGE_PIN R16 [get_ports {io_fx3_fdata[6]}]
set_property PACKAGE_PIN R17 [get_ports {io_fx3_fdata[7]}]
set_property PACKAGE_PIN N18 [get_ports {io_fx3_fdata[8]}]
set_property PACKAGE_PIN K25 [get_ports {io_fx3_fdata[9]}]
set_property PACKAGE_PIN K26 [get_ports {io_fx3_fdata[10]}]
set_property PACKAGE_PIN M20 [get_ports {io_fx3_fdata[11]}]
set_property PACKAGE_PIN L20 [get_ports {io_fx3_fdata[12]}]
set_property PACKAGE_PIN L25 [get_ports {io_fx3_fdata[13]}]
set_property PACKAGE_PIN M24 [get_ports {io_fx3_fdata[14]}]
set_property PACKAGE_PIN M25 [get_ports {io_fx3_fdata[15]}]
set_property PACKAGE_PIN R23 [get_ports {io_fx3_fdata[16]}]
set_property PACKAGE_PIN T23 [get_ports {io_fx3_fdata[17]}]
set_property PACKAGE_PIN R22 [get_ports {io_fx3_fdata[18]}]
set_property PACKAGE_PIN T22 [get_ports {io_fx3_fdata[19]}]
set_property PACKAGE_PIN P26 [get_ports {io_fx3_fdata[20]}]
set_property PACKAGE_PIN R26 [get_ports {io_fx3_fdata[21]}]
set_property PACKAGE_PIN T25 [get_ports {io_fx3_fdata[22]}]
set_property PACKAGE_PIN M26 [get_ports {io_fx3_fdata[23]}]
set_property PACKAGE_PIN N26 [get_ports {io_fx3_fdata[24]}]
set_property PACKAGE_PIN P25 [get_ports {io_fx3_fdata[25]}]
set_property PACKAGE_PIN R25 [get_ports {io_fx3_fdata[26]}]
set_property PACKAGE_PIN R21 [get_ports {io_fx3_fdata[27]}]
set_property PACKAGE_PIN R20 [get_ports {io_fx3_fdata[28]}]
set_property PACKAGE_PIN P24 [get_ports {io_fx3_fdata[29]}]
set_property PACKAGE_PIN P23 [get_ports {io_fx3_fdata[30]}]
set_property PACKAGE_PIN N19 [get_ports {io_fx3_fdata[31]}]

# Slew Rate and drive strength and IO Stds for FX3 data
set_property DRIVE 12 [get_ports {io_fx3_fdata[0]}]
set_property SLEW FAST [get_ports {io_fx3_fdata[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {io_fx3_fdata[0]}]
# ...
set_property DRIVE 12 [get_ports {io_fx3_fdata[31]}]
set_property SLEW FAST [get_ports {io_fx3_fdata[31]}]
set_property IOSTANDARD LVCMOS33 [get_ports {io_fx3_fdata[31]}]

Caution!

Users may modify the pin locations as per their own design requirements. However, it is
recommended not to modify the Drive Strength and Slew rates of those pins.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 26



Example Design

Performace benchmarking

The design and its performance was thoroughly tested using the UDK3 Performance
Monitor tool available with the UDK3 toolchain under <UDK3_installation_path>/udk3-
tools-windows-1.5.x folder. The Performace Monitor was run on an Intel Core i7-4790
processor  running  a  64-bit  Windows-7  Ultimate  operating  system.  The  design's
performance was recorded and is presented in the table below.

Peripheral Transfer Size 
(Bytes)

Area Size Write Speed 
(MBps)

Read Speed 
(MBps)

Read & verify 
(MBps)

Block RAM 2048 0x0001_000
0

32.10 15.60 21.00

Block RAM 8192 0x0001_000
0

127.85 62.60 84.20

Block RAM 16384 (16K) 0x0001_000
0

152.30 75.50 130.25

The performance of the BeastLink IP Core was observed to be dependent on the
Transfer Size. Since the BRAM in the example design was limited to 16Kbyte, another
benchmarking was performed with the Cesys EFM03 Beastboard where the on-board
DDR3L RAM which facilitates a larger address space was targeted. The results were
recorded and is presented in the table below.

Peripheral Transfer Size 
(Bytes)

Area Size Write Speed 
(MBps)

Read Speed 
(MBps)

Read & verify 
(MBps)

DDR3L 
RAM

8192 0x8000_000
0

124.10 62.25 82.65

DDR3L 
RAM

65536 (64K) 0x8000_000
0

266.75 222.50 242.50

DDR3L 
RAM

262144 (256K) 0x8000_000
0

290.25 289.50 282.25

DDR3L 
RAM

1048576 (1M) 0x8000_000
0

304.30 320.50 302.50

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 27



Copyright Notice

Copyright Notice
This file contains confidential  and proprietary information of Cesys GmbH and is

protected under international copyright and other intellectual property laws.

Disclaimer

This file contains confidential  and proprietary information of Cesys GmbH and is
protected under international copyright and other intellectual property laws.

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 28



Disclaimer

Disclaimer
This  disclaimer  is  not  a  license  and  does  not  grant  any  rights  to  the  materials

distributed herewith. Except as otherwise provided in a valid license issued to you by
Cesys, and to the maximum extent permitted by applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS,
AND  CESYS  HEREBY  DISCLAIMS  ALL  WARRANTIES  AND  CONDITIONS,
EXPRESS,  IMPLIED,  OR  STATUTORY,  INCLUDING  BUT  NOT  LIMITED  TO
WARRANTIES  OF  MERCHANTABILITY,  NON-INFRINGEMENT,  OR FITNESS  FOR
ANY PARTICULAR PURPOSE;

and
(2) Cesys shall not be liable (whether in contract or tort,  including negligence, or

under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under or in connection with these materials, including for any direct, or any
indirect, special,  incidental,  or consequential loss or damage (including loss of data,
profits,  goodwill,  or  any type of  loss  or  damage suffered as  a  result  of  any action
brought by a third party) even if such damage or loss was reasonably foreseeable or
Cesys had been advised of the possibility of the same.

CRITICAL APPLICATIONS
CESYS products are not designed or intended to be fail-safe,  or for  use in any

application requiring fail-safe performance,  such as life-support  or  safety devices or
systems,  Class  III  medical  devices,  nuclear  facilities,  applications  related  to  the
deployment of  airbags,  or  any other applications that  could lead to death,  personal
injury,  or  severe  property  or  environmental  damage  (individually  and  collectively,
"Critical Applications"). Customer assumes the sole risk and liability of any use of Cesys
products  in  Critical  Applications,  subject  only  to  applicable  laws  and  regulations
governing limitations on product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF
THIS FILE AT ALL TIMES.

Address

CESYS Gesellschaft für angewandte Mikroelektronik mbH
Gustav-Hertz-Str. 4
D - 91074 Herzogenaurach - GERMANY

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 29



Disclaimer

Table of Contents
Introduction                                                                                                   ..........................................................................................  2  
Features                                                                                                                             ......................................................................................................................  2  

IP Facts                                                                                                         ................................................................................................  3  
IP Information                                                                                                                     ..............................................................................................................  3  
Inclusions                                                                                                                           ....................................................................................................................  3  
Resource Utilization                                                                                                             ......................................................................................................  3  
Applications                                                                                                                        .................................................................................................................  4  
Advantages                                                                                                                         ..................................................................................................................  4  

Quick Start                                                                                                    ............................................................................................  5  
Obtaining the IP-Core files                                                                                                    .............................................................................................  5  
Adding the BeastLink IP to the IP Catalog                                                                              ........................................................................  5  

Overview                                                                                                       ..............................................................................................  7  
Port Description                                                                                                                   ............................................................................................................  7  
BeastLink Port Description.........................................................................................................7
Clocking                                                                                                                            ....................................................................................................................  10  
Resets                                                                                                                              .......................................................................................................................  10  
Functional Description                                                                                                        .................................................................................................  11  
Internal Structure...................................................................................................................11
BeastLink Protocol Structure....................................................................................................12
GPIF-II State Machine.............................................................................................................14
CMD/Write and Resp/Read FIFOs..............................................................................................14
UDK3 State machine...............................................................................................................15
Elimination of Read-Write Collision............................................................................................15
The DMA Engine.....................................................................................................................17

Example Design                                                                                           ...................................................................................  18  
Using the example design                                                                                                   ............................................................................................  18  
Clock Module.........................................................................................................................19
BRAM Controller and Block Memory Generator............................................................................20
Simulating the design                                                                                                         ..................................................................................................  21  
Synthesis and Implementation                                                                                            .....................................................................................  22  
Verifying the design                                                                                                           ....................................................................................................  22  
Constraints                                                                                                                        ................................................................................................................  23  
Performace benchmarking                                                                                                  ............................................................................................  27  

Copyright Notice                                                                                           ...................................................................................  28  
Disclaimer                                                                                                                         ..................................................................................................................  28  

Disclaimer                                                                                                    ...........................................................................................  29  
CRITICAL APPLICATIONS                                                                                                    .............................................................................................  29  
Address................................................................................................................................29

Revision history                                                                                            ....................................................................................  31  

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 30



Revision history

Revision history

Version Date Details Author Approved by
1.0 Feb, 2018 Initial Release vv ??

UG128 - BeastLink (1.0) 02/26/18 www.cesys.com 31


	Introduction
	Features

	IP Facts
	IP Information
	Inclusions
	Resource Utilization
	Applications
	Advantages

	Quick Start
	Obtaining the IP-Core files
	Adding the BeastLink IP to the IP Catalog

	Overview
	Port Description
	BeastLink Port Description

	Clocking
	Resets
	Functional Description
	Internal Structure
	BeastLink Protocol Structure
	GPIF-II State Machine
	CMD/Write and Resp/Read FIFOs
	UDK3 State machine
	Elimination of Read-Write Collision
	The DMA Engine


	Example Design
	Using the example design
	Clock Module
	BRAM Controller and Block Memory Generator

	Simulating the design
	Synthesis and Implementation
	Verifying the design
	Constraints
	Performace benchmarking

	Copyright Notice
	Disclaimer

	Disclaimer
	CRITICAL APPLICATIONS
	Address


	Revision history

