
UDK3 API Specification

The Cesys Unified Development Kit Release 3 (UDK3) is
a concept for connecting CESYS FPGA boards with
different host-interfaces to hosts running different operating
systems. The modular structure of the UDK3 makes it easy
to switch the operating systems or the host interfaces you
wish to use in your project and to support any combination.
UDK3 consists of a software library that is used in the host
application and a IP that is embedded in the FPGA design
of the target board.

UG101 (v1.3) December, 2017 www.cesys.com 1

UDK3 Features

UDK3 Features
The UDK3 is a modular cross-platform concept with interfaces to various Cesys
devices1. Its design enables communication using PCI and USB bus systems2.

It provides numerous advantages to system designers and end-users:

• unique cross-platform access layer to supported hardware
• transparency of the underlying bus system functionality
• hide the complexity of system- and bus-specific implementations
• no throughput-reduction of the underlying bus system
• support for different programming languages

The most important functionalities of the UDK3 core are:

• simple device enumeration and access
• access to all information about a specific device
• address based communication even with serial interfaces like USB or Ethernet
• consistent error handling

The current version of UDK3 is 1.5. It is designed to operate on Microsoft™ Windows
x86 32 and 64 bit, Linux x86 64 bit, and Linux armv6l for Raspberry Pi.

Thread safety
The API is generally thread safe. Most functionality is protected by exclusive locks. The
only exceptions are functions that are device related. They have a shared lock, so
different threads can independently communicate with different devices. If more than
one thread tries to access a single device, the behavior is undefined.

1 There is also a license available to adopt customer boards and to use and distribute the UDK3 binaries
with your own hardware. Ask for UDK3 in-house source-code license.

2 More interfaces will be added to the UDK3 as new Cesys boards become available. The existing Cesys
boards with PCI and PCIe interface will stick with UDK2.

UG101 (v1.3) December, 2017 www.cesys.com 2

Obtaining and installing UDK3

Obtaining and installing UDK3
UDK3 can be downloaded from www.cesys.com. It is distributed as single archive file,
but available as .zip and .tar.bz2. There is no installation required. Please read the
instructions in the README provided for each programming language for detailed
usage instructions.

UDK3 Software structure
The UDK3 structure splits into different abstraction layers:

Applications can access the core layer directly using the C – API or through language
specific layers (which offer the API in an object orientated style).
All language specific layers are provided as source code.

The core layer of the UDK3 is a communication-bus neutral component. It loads all
compatible modules during startup and acts as gateway to all of them.
For example, the enumeration of devices returns a list that contains the devices that has
been found in all modules. All subsequent communication with an opened device is
routed by the core layer to the specific module.

UG101 (v1.3) December, 2017 www.cesys.com 3

Figure 1: UDK3 Layers

Core layer

C Application

C++ API

Java Application .NET ApplicationC++ Application Python Application

Java API .NET API Python API

WinUSB module1 Libusb 1.x module2 Ethernet module3 Other bus module

Firmware

FPGA Design

1 Microsoft Windows only
2 Linux and Mac OS X only
3 planned feature

Using UDK3 with Microsoft™ Windows

Using UDK3 with Microsoft™ Windows
Windows support ranges from Windows 7 SP1 up to Windows 10.

Runtime libraries
The files in the table below must be available at runtime, independent from the used
programming language. udk3mod*.dll files must either be in the startup path of the
application or in a path that must be explicitly communicated to the API.

Library file Description

udk3-1.5-x86.dll The core layer, 32 bit version.

udk3-1.5-x86_64.dll The core layer, 64 bit version.

plx-api-711-x86.dll PCI/PCIe low-level module, based on PLX SDK 7.11, 32 bit version.

plx-api-711-x86_64.dll PCI/PCIe low-level module, based on PLX SDK 7.11, 64 bit version.

udk3mod-1.5-plx711-x86.dll PCI/PCIe module, based on PLX SDK 7.11, 32 bit version.

udk3mod-1.5-plx711-x86_64.dll PCI/PCIe module, based on PLX SDK 7.11, 64 bit version.

udk3mod-1.5-winusb-x86.dll WinUSB module, 32 bit version.

udk3mod-1.5-winusb.dll WinUSB module, 64 bit version.

USB
On Windows systems, Microsoft™ WinUSB is used as driver for USB devices. This
guarantees compatibility on all supported Windows versions.

To use USB devices on Windows, a driver must be installed for the device. In addition to
the driver, a background service downloads the firmware to newly connected devices,
so they can be used. The service can be found in the service panel as Cesys UDK3
USB Device Service. If this service is stopped, devices remain unconfigured and can't
be used.

Both driver and service are part of the separate UDK3 USB driver installation package
which is intended to be installed on end user PC's.

UG101 (v1.3) December, 2017 www.cesys.com 4

Using UDK3 with Linux

Using UDK3 with Linux
We tested UDK3 with different Linux distributions on x86_64 processor architecture.
The primary testing platform is the latest Ubuntu LTS version 16.04. An ARMv6 module,
tested on Raspberry Pi, is also available.

Runtime libraries
The files in the table below must be available at runtime in the library path, independent
to the used programming language. udk3mod*.so files must either be in the startup path
of the application or in a path that must be explicitly communicated to the API. Best
practice is to put all these files in the startup path of the application and extend
environment variable LD_LIBRARY_PATH to this folder.

Library file Description

libudk3-1.5.so The core layer.

libudk3mod-1.5-plx711.so PCI/PCIe module, based on PLX SDK 7.11.

libudk3mod-1.5-libusb.so libusb 1.0.x module.

USB
All communication on Linux systems is done using libusb 1.0.x. This grants compatibility
to nearly all Linux derivatives. The development package of libusb 1.0.x is required
which usually can be installed by the package manager of your specific Linux system.
On Ubuntu LTS 16.04 the development package of libusb 1.0.x can be installed via:

sudo apt-get install libusb-1.0-0-dev

To use the devices on Linux systems, a udev rule must be installed, which is
responsible for two important tasks:

• Non-root users get access to the devices, the rule sets the permission for all
Cesys UDK3 devices to 666 (rw-rw-rw-).

• Upon connection of a Cesys UDK3 device, a firmware download tool is called,
which downloads the firmware to the Cypress FX2 or FX3 device on the board.
Without this firmware, the devices are not usable.

The installation of this rule is done using shell script install-usb.sh which must be
started as root user. This installs the rule as 99-udk-permissions.rules into the user
specified udev rule directory. The install script creates a script called uninstall.sh,
which removes to rules from the system. If the installation path changes, please update
the rule!

UG101 (v1.3) December, 2017 www.cesys.com 5

UDK3 API

UDK3 API

Important files

API Path Description

C / C++

c_c++/examples/* Examples for C and C++ API.

c_c++/lib/* Files required for linking when using Microsoft Visual C++.

c_c++/udk3api.h Header for for the C API

c_c++/udk3api++.h Header file for the C++ API.

c_c++/udk3api++.cpp C++ API implementation. Must be included in C++ projects the use the
UDK3.

c_c++/*.cmd Batch files to create Visual Studio C++ projects or MinGW Makefiles.

c_c++/*.sh Shell scripts to create Makefiles on POSIX platforms (Linux).

Java

java/udk3api-1.0.jar The library layer for Java. Example included.

java/udk3api-1.0-sources.jar Sources for the Java interface.

.NET

net/example/example.cs Example for .NET API in C#.

net/udk3api/* C# sources for the .NET interface. Compile them for your .NET
framework.

net/*.cmd Batch files to build Visual Studio Solution on Windows (compatible with
Monodevelop).

net/*.sh Shell scripts to create a Monodevelop solution on POSIX platforms
(Linux).

Python

python/example.py The python example.

python/udk3api.py Library layer for Python. Compatible with Python 2.x and 3.x.

UG101 (v1.3) December, 2017 www.cesys.com 6

UDK3 Language support

UDK3 Language support
UDK3 supports five different programming languages. The core layer is a shared library,
which is a .dll file on Windows and a .so file on Linux. It offers all functionality as
functions using standard types. New languages can be added using a thin language
specific layer.

The main design goal was to offer a similar interface for each programming language by
preserving the idioms and conventions of the language in question. Except the C
interface, all languages access the functionality in an object-oriented manner.

The OS-specific runtime files must be accessible at run-time for all used programming
languages.

It is recommended to take a look at the example which is available for every supported
language. They are well documented and show most features of the API.

C

Language specific
The C interface is the only one that accesses the core layer directly.

All functions are prefixed with Ce, constants are prefixed using CE.

Most functions return an error code which should be checked in any case. If an error
has been detected, the error reason can be retrieved from CeGetLastErrorText().

As this interface does not offer object orientated design, devices are referenced using a
handle. The handle is retrieved when opening a device and must be used subsequently
to specify the device in question until CeClose() is called.

Build
UDK3 can be used by including udk3api.h into the project.

When using Visual Studio on Windows, udk3-1.5-x86.lib must be added as link library
for 32 bit programs, and udk3-1.5-x86_64.lib for 64 bit programs. For Linux, the shared

UG101 (v1.3) December, 2017 www.cesys.com 7

C

library libudk3-1.5.so must be used in the linking stage.

Object-orientated languages
C++, Java, .NET and Python offer the UDK3 interface using objects. Besides minor
differences, all have the same interface. The following table shows the types relevant
for the API user:

UDK3 types

BusType An enumeration for all supported buses.

DeviceType An enumeration of known devices or device classes.

DeviceInfo Offers various information about the device it is mapped to.

EnumeratedDevice This type is returned for every device found during enumeration. They are only
valid until a new enumeration is started.

Device Returned from EnumeratedDevice.open(). The object to interact with the
hardware.

LibraryInterface As .NET and Java do not support any global methods, this type contains global
functionality, which are functions in C++ and Python.

C++

Language specific
The C++ interface is compatible to C++03 and uses elements of the standard template
library (STL) wherever suitable.

All functionality is encapsulated in namespace udk3api to not interfere with other API's.

Error handling is done using exceptions. Whenever the core layer reports and error, the
C++ layer reads the textual reason and throws a std::exception.

Build
UDK3 can be used by adding udk3api++.cpp into the project. The interface is
accessible by including udk3api++.h wherever required.

When using Visual Studio on Windows, udk3-1.5-x86.lib must be added as link library
for 32 bit programs, and udk3-1.5-x86_64.lib for 64 bit programs. For Linux, the shared
library libudk3-1.5.so must be used in the linking stage.

UG101 (v1.3) December, 2017 www.cesys.com 8

Java

Java

Language specific
The Java interface is pre-built for Java 1.7.

There is an external dependency to jna. The latest version can be found here:
https://github.com/twall/jna.

All errors are reported using java.io.IOException.

Java has a special method to load an FPGA design directly from the .jar to the device:
Device.programFpgaFromResource().

Build
Just add udk3api-1.5.jar and jna to your project.

.NET / CLR

Language specific
The interface is written in C# but usable with all .NET compatible languages. The
interface is successfully tested with mono, so cross-platform development is possible.

Errors are reported using System.IO.IOException.

Wherever suitable, properties are used instead of Get/Set methods. In comparison to
the other languages, Pascal case is used for method names to preserve the CLR
guideline.

The interface is compatible to .NET framework 4.0 and higher. Older versions may be
compatible but this is not verified.

The API can be built with the free Express versions of Visual Studio and Mono.

Build
Add udk3apinet-1.5.dll to the application that requires UDK3.

UG101 (v1.3) December, 2017 www.cesys.com 9

https://github.com/twall/jna

Python

Python

Language specific
The interface is compatible to both 2.x and 3.x branches. As Python has no native
support for enumerators, bus- and device types are defined globally.

Errors are reported by raising an Exception.

General API overview
The following table lists all API functions and their relation across all supported
programming languages.

The functions are grouped into 3 categories:
• Global, device independent functions like API initialization, deinitialization, error

handling and device enumeration.
• Device related functions like device preparation and data transfer.
• Device information functions to access device data like serial number and user

ID.

UG101 (v1.3) December, 2017 www.cesys.com 10

General API overview

C C++ Java .NET Python

Global, device independent functions

CeGetLastErrorText -3 -3 -3 -3

CeGetUdk3VersionString getUdkVersion LibraryInterface.getUdkVersion LibraryInterface.UdkVersion getUdkVersion

CeInit init LibraryInterface.init LibraryInterface.Init init

CeInitEx initEx LibraryInterface.initEx LibraryInterface.InitEx initEx

CeEnumerate enumerate LibraryInterface.enumerate LibraryInterface.Enumerate enumerate

CeEnumerateInfo -4 -4 -4 -4

CeDeInit deInit LibraryInterface.deInit LibraryInterface.DeInit deInit

CeSetLogLevel setLogLevel LibraryInterface.setLogLevel LibraryInterface.SetLogLevel setLogLevel

Device related functions

CeOpen EnumeratedDevice.open EnumeratedDevice.open EnumeratedDevice.Open EnumeratedDevice.open

CeClose Device.close Device.close Device.Close Device.close

CeReadRegister Device.readRegister Device.readRegister Device.ReadRegister Device.readRegister

CeWriteRegister Device.writeRegister Device.writeRegister Device.WriteRegister Device.writeRegister

CeReadBlock Device.readBlock Device.readBlock Device.ReadBlock Device.readBlock

CeWriteBlock Device.writeBlock Device.writeBlock Device.WriteBlock Device.writeBlock

CeWaitForInterrupt Device.waitForInterrupt Device.waitForInterrupt Device.WaitForInterrupt Device.waitForInterrupt

CeEnableInterrupt Device.enableInterrupt Device.enableInterrupt Device.EnableInterrupt Device.enableInterrupt

CeResetFpga Device.resetFpga Device.resetFpga Device.ResetFpga Device.resetFpga

CeProgramFpgaFromBin Device.programFpgaFromBin Device.programFpgaFromBin Device.ProgramFpgaFromBin Device.programFpgaFromBin

CeProgramFpgaFomMemory Device.programFpgaFromMemory Device.programFpgaFromMemory Device.ProgramFpgaFromMemory Device.programFpgaFromMemory

CeProgramFpgaFomMemoryZ Device.programFpgaFromMemoryZ Device.programFpgaFromMemoryZ Device.ProgramFpgaFromMemoryZ Device.programFpgaFromMemoryZ

3 Not accessible as error handling is automatically done by the respective language layer using exceptions.
4 CeEnumerate and CeEnumerateInfo are used inside enumerate().

UG101 (v1.2) April, 2017 www.cesys.com 11

General API overview

C C++ Java .NET Python

CeSetTimeOut Device.setTimeout Device.setTimeout Device.SetTimeout Device.setTimeout

CeEnableBurst Device.enableBurst Device.enableBurst Device.EnableBurst Device.enableBurst

Device information functions

CeSetUserId DeviceInfo.setUserId DeviceInfo.setUserId DeviceInfo.UserId DeviceInfo.setUserId

CeGetUserId DeviceInfo.getUserId DeviceInfo.getUserId DeviceInfo.UserId DeviceInfo.getUserId

CeGetDerivateInfo DeviceInfo.getDerivateInfo DeviceInfo.getDerivateInfo DeviceInfo.DerivateInfo DeviceInfo.getDerivateInfo

CeGetDerivateId DeviceInfo.getDerivateId DeviceInfo.getDerivateId DeviceInfo.DerivateId DeviceInfo.getDerivateId

CeGetMaxTransferSize DeviceInfo.getMaxTransferSize DeviceInfo.getMaxTransferSize DeviceInfo.MaxTransferSize DeviceInfo.getMaxTransferSize

CeGetSerialNumber DeviceInfo.getSerialNumber DeviceInfo.getSerialNumber DeviceInfo.SerialNumber DeviceInfo.getSerialNumber

CeGetFirmwareVersion DeviceInfo.getFirmwareVersion DeviceInfo.getFirmwareVersion DeviceInfo.FirmwareVersion DeviceInfo.getFirmwareVersion

UG101 (v1.2) April, 2017 www.cesys.com 12

Lifecycle of an application using UDK3

Lifecycle of an application using UDK3
If not explicitly stated, the method names in this chapter are used from C++.

Initialization
The first task to do is the initialization of the API. This prepares some internal structures
and loads all UDK3 modules.
There are two different calls to accomplish this, init() or initEx(). While init() loads the
modules from the current path, the call to initEx() allows an explicit specification for a
path were modules should be loaded from. This can be useful if there are any
requirements to directory structures.

Enumeration and Open
Devices can now be enumerated. With the exception of C, this is simply done calling
enumerate(), which returns a list of devices found in the system.
Devices returned are only those who are not already opened (system wide). This
method expects a device type or device class to search for and filters the list of detected
devices by this parameter.
The returned list contains elements of type EnumeratedDevice. This type can be
understand as a possible “device candidate”. It's instance contains some device
information in it's device information structure (EnumeratedDevice.getDeviceInfo()).
Calling the EnumeratedDevice.open() method tries to connect to the device and
returns an instance of type Device in case of success.
The invocation of EnumeratedDevice.open() can fail, if a different application has
opened the device in the time between enumeration and opening it (or the device has
been unplugged between these calls).
This process can be done for multiple devices. If a new enumeration is done using
enumerate(), all previous instances of EnumerateDevice are invalid. Instances of type
Device are not affected!

[C specific] In C, an enumeration is done calling CeEnumerate(), which returns the
count of “device candidates”. For every device CeEnumerateInfo() must be invoked to
gather information about the instance. CeOpen() returns the handle for subsequent
usage. This enumeration is shown in the example application (example.c).
If CeEnumerate() is called again, the count and enumeration ID's from a previous call
are invalid. Handles returned by CeOpen() are not affected!

UG101 (v1.3) December, 2017 www.cesys.com 13

Lifecycle of an application using UDK3

At this point, all previously unavailable information (user ID, serial number, max transfer
size, derivate info and ID) can be accessed (through Device.getDeviceInfo()).

FPGA Configuration
Device communication can be done using the Device instance [C: handle]. To
configure a FPGA with a configuration bitstream by the host, one of the three possible
Device.program*() methods should be used (Device.programFpgaFromBin(),
Device.programFpgaFromMemory() or Device.programFpgaFromMemoryZ()).

The file format for FPGA-Designs is .bin (not .bit !). With ISE, check option Create
binary configuration file in Programming File / Process Properties.

To convert a .bit to .bin using the SDK, choose Xilinx Tools / Launch Shell. Change to
the directory of the .bit and call promgen -u 0 [design].bit -p bin -spi -w , where
[design].bit is the input file, and [design].bin is generated.

If Vivado Design Suite GUI version is being used to generate a bitstream, the .bin file
can be generated by selecting the “-bin_file*” option under “Flow Navigator/
PROJECT MANAGER/ Settings/Bitstream”. If Vivado TCL Console is being used to
generate a bitstream, then the option “-bin_file” must be added to the “write_bitsream”
command.

When a FPGA design is already loaded (using JTAG or loaded from flash), a call to
Device.resetFpga() must be done to synchronize communication with the host.
Without a active FPGA design, data transfer will time out.

Read and Write
Data transfer with the FPGA design is done using Device.readBlock() and
Device.writeBlock(). The addresses, sizes and flags must match the FPGA
implementation.
FPGA designs may be different when using varying bus systems (USB / PCI / Ethernet),
but on the host side they are always the same. This was one of the primary design
goals for UDK3!
Device.readRegister() and Device.writeRegister() are convenience methods that
transfer 4 bytes of data using the same mechanics and offer the input and output value
as 32 bit unsigned integer.
If a transfer takes longer than the time specified using Device.setTimeout(), it is

UG101 (v1.3) December, 2017 www.cesys.com 14

Lifecycle of an application using UDK3

recognized as failed. Under some circumstances (e.g. transfer to slow peripherals), this
value must be adjusted. The default value is 1000 milliseconds.
If the connection to the device gets lost (e.g. unplug), the next call to one of these
communication methods will fail.

Close Device
If the device communication isn't needed anymore, calling Device.close() will close the
connection and make the device available for new enumerations again.

A call to deInit() will close all devices and completely cleanup all internal structures. It is
possible to start with init() or initEx() at this point again.

Device communication
As not all buses have a unique address based protocol, UDK3 tries to replicate this
feature using different ways.

USB

USB has no native support for address based communication the way UDK3 offers it. In
this case, a simple protocol sits on top of the communication. This is handled on the
host side by the UDK3 internally, API users don't have to care about that.
On device / FPGA side, the implementation is described in application note AN101
UDK3 Transfer Protocol.

UG101 (v1.3) December, 2017 www.cesys.com 15

Copyright Notice

Copyright Notice

This file contains confidential and proprietary information of Cesys GmbH and is protected under
international copyright and other intellectual property laws.

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed herewith.
Except as otherwise provided in a valid license issued to you by Cesys, and to the maximum extent
permitted by applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND CESYS
HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;

and

(2) Cesys shall not be liable (whether in contract or tort, including negligence, or under any other
theory of liability) for any loss or damage of any kind or nature related to, arising under or in
connection with these materials, including for any direct, or any indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or
damage suffered as a result of any action brought by a third party) even if such damage or loss was
reasonably foreseeable or Cesys had been advised of the possibility of the same.

CRITICAL APPLICATIONS

CESYS products are not designed or intended to be fail-safe, or for use in any application requiring
fail-safe performance, such as life-support or safety devices or systems, Class III medical devices,
nuclear facilities, applications related to the deployment of airbags, or any other applications that
could lead to death, personal injury, or severe property or environmental damage (individually and
collectively, "Critical Applications"). Customer assumes the sole risk and liability of any use of Cesys
products in Critical Applications, subject only to applicable laws and regulations governing limitations
on product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT
ALL TIMES.

CESYS Gesellschaft für angewandte Mikroelektronik mbH
Gustav-Hertz-Str. 4
D - 91074 Herzogenaurach
Germany

UG101 (v1.3) December, 2017 www.cesys.com 16

Revision history

Revision history

Version Date Comment Author Approved

V1.0 February, 21 2014 Initial release.

V1.1 May, 13 2014 UDK 1.1 release fixes.

V1.2 April, 2017 Updated to UDK3 API version 1.5 with support
for EFM-03.

mra Mh

V1.3 December, 5 2017 Updated FPGA Configuration for bin file
generation in Vivado toolset

vvi vvi

UG101 (v1.3) December, 2017 www.cesys.com 17

Table of contents

Table of contents

UDK3 Features...2

Thread safety..2

Obtaining and installing UDK3..3

UDK3 Software structure...3

Using UDK3 with Microsoft™ Windows...4
Runtime libraries..4

USB..4

Using UDK3 with Linux..5
Runtime libraries..5

USB..5

UDK3 API..6
Important files...6

UDK3 Language support..7

C...7
Language specific...7

Build...7

Object-orientated languages..8

C++...8
Language specific...8

Build...8

Java...9
Language specific...9

Build...9

.NET / CLR..9
Language specific...9

Build...9

Python..10
Language specific..10

General API overview..10

UG101 (v1.3) December, 2017 www.cesys.com 18

Table of contents

Lifecycle of an application using UDK3...13
Initialization...13

Enumeration and Open..13

FPGA Configuration...14

Read and Write...14

Close Device...15

Device communication...15
USB...15

Copyright Notice...16

Disclaimer...16

Revision history..17

UG101 (v1.3) December, 2017 www.cesys.com 19

	UDK3 Features
	Thread safety
	Obtaining and installing UDK3
	UDK3 Software structure
	Using UDK3 with Microsoft™ Windows
	Runtime libraries
	USB

	Using UDK3 with Linux
	Runtime libraries
	USB

	UDK3 API
	Important files

	UDK3 Language support
	C
	Language specific
	Build

	Object-orientated languages
	C++
	Language specific
	Build

	Java
	Language specific
	Build

	.NET / CLR
	Language specific
	Build

	Python
	Language specific

	General API overview
	Lifecycle of an application using UDK3
	Initialization
	Enumeration and Open
	FPGA Configuration
	Read and Write
	Close Device
	Device communication
	USB

	Copyright Notice
	Disclaimer
	Revision history
	Table of contents

